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An initial-value problem is formulated for a three-dimensional wave packet in a compressible
boundary layer flow. The problem is solved using a Laplace transform with respect to time and
Fourier transforms with respect to the streamwise and spanwise coordinates. The solution can be
presented as a sum of modes consisting of continuous and discrete spectra of temporal stability
theory. Two discrete modes, known as mode S and mode F, are of interest in high-speed flows since
they may be involved in a laminar-turbulent transition scenario. The continuous and discrete
spectrum are analyzed numerically for a hypersonic flow with Mach number M =5.6. The following
features are revealed: �1� The synchronism of mode S with acoustic waves at a streamwise wave
number �→0 is primarily two-dimensional; �2� at high angles of disturbance propagation, mode F
is no longer synchronized with entropy and vorticity waves; �3� at high angles of disturbance
propagation, the synchronism between mode S and mode F is not accompanied by a mode S
instability, and at even higher angles of disturbance propagation, mode S and mode F are not
synchronized. © 2005 American Institute of Physics. �DOI: 10.1063/1.2013261�
I. INTRODUCTION

The transition process from laminar to turbulent flow in
hypersonic boundary layers has been studied for many years.
However, our understanding of this phenomenon is still very
poor compared to the low-speed case.1 Several reasons exist
for this difference. For example, experimental conditions are
severe in hypersonic wind tunnels. Because of high levels of
free-stream noise, it is difficult to perform experiments with
controlled disturbances. Unlike the low-speed case,2 it is dif-
ficult to design perturbers that can generate high-frequency
artificial disturbances of individual modes. Instead, wave
trains and wave packets are generated. Therefore, interpreta-
tion of experimental data is not straightforward, and this is-
sue leads to the need for close coordination between theoret-
ical modeling and experimental design and testing.3

Experiments with controlled disturbances could provide
insight into the governing mechanisms associated with hy-
personic laminar-turbulent transition, with a sharp cone be-
ing a good candidate for transition studies due to its rela-
tively simple geometry. Several methods for excitation of
artificial disturbances in a hypersonic boundary layer are
available. These methods could be used to generate either
two-dimensional �2D� or three-dimensional �3D� wave pack-
ets of a broad frequency band.

Additionally, due to advances in computational fluid dy-
namics, it is possible to perform reliable simulations of
laminar-turbulent transition. Ma and Zhong4,5 and Zhong and
Ma6 have performed direct numerical simulations to better
understand the mechanisms leading to hypersonic boundary
layer transition.

Accompanying these experiments, both wind tunnel and
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numerical, should be theoretical modeling and studies of the
development of wave packets in hypersonic boundary layers.

Gustavsson7 solved a 2D initial-value problem for in-
compressible boundary layer flows. Fedorov and Tumin3

analyzed a 2D initial-value problem in a compressible
boundary layer. However, the problem for 3D wave packets
has not yet been considered.

Mack8,9 used linear stability theory to perform extensive
studies of the behavior of 2D and 3D instability modes for
both the temporal and spatial problems. In particular, he dis-
covered that for compressible flows, higher acoustic instabil-
ity modes exist along with the first mode. However, even
though the behavior of these modes is understood, the
mechanism by which the modes are generated �receptivity
problem� is still a subject of research. Throughout the
1980’s, 1990’s, and 2000’s, Fedorov and colleagues discov-
ered many results involving the receptivity of high-speed
flows. One can find a complete bibliography in Ref. 10.

Particularly, this spatial analysis of the 2D instability
modes in hypersonic flows revealed the following: �1� in the
region of the leading edge, two discrete modes, mode F and
mode S �we use Fedorov’s10 terminology�, are synchronized
with fast and slow acoustic waves, respectively; �2� at a
downstream location, mode F is synchronized with the en-
tropy and vorticity waves; �3� further downstream, mode F
and mode S could also become synchronized.11 It is impor-
tant to understand these features due to the role they may
have in the transition process. Later on, similar features of
mode F and mode S were seen in the 2D temporal problem.3

Our objective is to solve the initial-value problem for a
3D wave packet in a compressible boundary layer flow. Ad-
ditionally, we will use a numerical example to illustrate fea-
tures of the spectrum that are associated with the 3D charac-

ter of the problem.

© 2005 American Institute of Physics6-1
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II. PROBLEM FORMULATION

We consider a 3D parallel boundary layer flow of a ca-
lorically perfect gas. At the initial time, t=0, a 3D localized
disturbance is introduced into the flow. The problem is to
describe the downstream evolution of the perturbation. The
hydrodynamic and thermodynamic characteristics of the flow
are expressed as a superposition Qs�y�+q�x ,y ,z , t�, where Qs

is a mean-flow quantity and q is its disturbance. The stream-
wise, normal, and spanwise spatial coordinates, given re-
spectively by x , y , z, are nondimensionalized using a length
scale L*, and time is nondimensionalized as L* /Ue

*, where Ue
*

is the streamwise mean velocity at the upper boundary layer
edge. The mean-flow velocity components are referenced to
Ue

*, while temperature, density, and viscosity are referenced
to their respective quantities at the upper boundary layer
edge. Pressure is made nondimensional, using the dynamic
pressure, �e

*�Ue
*�2. We denote u, v, and w to be respectively

the streamwise, normal, and spanwise velocity disturbances,
and �, �, �, and � to be respectively the temperature, pres-
sure, density, and viscosity disturbances. The linearized, di-
mensionless, governing equations for the disturbances are
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where Re is the Reynolds number, Pr is the Prandtl number,
and � is the specific heat ratio. Additionally, r=2�e
+2� /3 , m=2�e−1� /3, where e=0 corresponds to the Stokes
hypothesis. Us�y�, Ws�y�, Ts�y�, and �s�y� are mean-flow
profiles.

Denoting A= �u ,�u /�y ,v ,� ,� ,�� /�y ,w ,�w /�y�T as the
disturbance vector function, it is possible to rewrite the sys-
tem of equations �1a�–�1f� in the following matrix operator
form:
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L0, H10, H11, H2, H3, H4, H5, H6, H7, and H8 are 8�8
matrices whose nonzero elements are presented in the Elec-
tronic Physics Auxiliary Publication Service �EPAPS�.12 At
the initial time, t=0, the disturbance vector is denoted as

A�x,y,z,0� = A0�x,y,z� . �3�

The boundary conditions are as follows:

y = 0: u = v = w = � = 0;

y → 	: �Aj� → 0 �j = 1,…,8� . �4�

These boundary conditions correspond to the no-slip condi-
tion and zero temperature disturbance on the wall, and all
disturbances decaying to zero far outside the boundary layer.

III. SOLUTION OF THE INITIAL-VALUE PROBLEM

The three-dimensionality of both the boundary layer
flow and the disturbance adds complexity to the problem.
However, the problem can be solved using a similar ap-
proach to the one used in Ref. 3 for the 2D wave packet. The

problem is solved using a Fourier transform with respect to
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the streamwise coordinate, x, a Fourier transform with re-
spect to the spanwise coordinate, z, and a Laplace transform
with respect to time, t:

Ap�
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1

2�
�

0

	

e−pt�
−	
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e−i
zA�x,y,z,t�dzdxdt .

�5�

By applying the transforms given by Eq. �5� to the prob-
lem �Eqs. �2�–�4��, we arrive at a system of nonhomogeneous
ordinary differential equations for the amplitude vector Ap�
:

d
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� +
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 − H10A0�
 + H11Ap�
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H7
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dy
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where A0�
�y� is the Fourier transform �with respect to both
x and z� of A0�x ,y ,z�, the initial disturbance vector. The
solution of Eq. �6� satisfies the following boundary condi-
tions:

y = 0: Ap�
1 = Ap�
3 = Ap�
5 = Ap�
7 = 0;

�7�
y → 	: �Ap�
j� → 0 �j = 1,…,8� .

The nonhomogeneous term in Eq. �6� is the term containing
the Fourier transform of the initial disturbance, A0�
. The
remainder of the terms form the homogeneous part of Eq.
�6�. This homogeneous equation can be recast as the follow-
ing system of ordinary differential equations:

dAp�


dy
= H0Ap�
, �8�

where H0 is an 8�8 matrix whose nonzero elements are
presented in Ref. 12. There are eight fundamental solutions,
z1 ,… ,z8, of the homogeneous system of equations given by
Eq. �8�. Outside the boundary layer �y→	� , H0 is a matrix
of constant coefficients, and thus each fundamental solution
has an exponential asymptotic behavior exp�� jy�, where
�1 ,… ,�8 are determined from the characteristic equation

detH0 − �I = 0. �9�

For y→	, Eq. �9� can be written as

�b11 − �2��b41 − �2���b22 − �2��b33 − �2� − b23b32� = 0,

�10�
where
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b11 = H0
21, b41 = H0

87 = H0
21 = b11,

b22 = H0
42H0

24 + H0
43H0

34 + H0
46H0

64 + H0
48H0

84,

b23 = H0
42H0

25 + H0
43H0

35 + H0
46H0

65 + H0
48H0

85,

b32 = H0
64, b33 = H0

65,

with Hij denoting the �i , j� element of matrix H.
The roots of Eq. �10� are

�1,2
2 = b11 = �2 + 
2 + i Re�� + 
Wse − ip� ,

�3,4
2 = �b22 + b33�/2 + 1

2
��b22 − b33�2 + 4b23b32,

�11�
�5,6

2 = �b22 + b33�/2 − 1
2
��b22 − b33�2 + 4b23b32,

�7,8
2 = b41 = �2 + 
2 + i Re�� + 
Wse − ip� ,

where Wse is the mean-flow spanwise velocity at the upper
boundary layer edge. The root branches are chosen to have
Real��1 ,�3 ,�5 ,�7��0, and we define a matrix of fundamen-
tal solutions

Z = z1,…,z8 . �12�

The nonhomogeneous system given by Eq. �6� has a solution
expressed in the form

Ap�
 = ZQ�y� , �13�

where the vector of coefficients Q�y� is found using the
method of variation of parameters:

2L0
dZ

dy

dQ

dy
+ L0Z

d2Q

dy2 +
dL0

dy
Z

dQ

dy
+ Z

dQ

dy
− i�H3Z

dQ

dy

− i
H7Z
dQ

dy
= F , �14�

where F=−�H10A0�
�. Since Z is the matrix of fundamental
solutions of the homogeneous system of equations, it follows
that dZ /dy=H0Z. Substitution of this relationship into Eq.
�14� yields the following system of equations:
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Let us consider the individual equations of Eq. �15�. Denot-
ing zij to be the ith component of vector z j , Qj to be the jth
component of vector Q, and Fj to be the jth component of
vector F, then the first, third, fifth, sixth, and seventh equa-

tions of Eq. �15� are, respectively,
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The second and eighth equations of Eq. �15� are, respec-
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the following forms:
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Therefore, the nonhomogeneous system �15� can be rewrit-
ten as

Z
dQ

dy
= � ,
with

ownloaded 16 May 2008 to 132.250.142.131. Redistribution subject to
1 = 0, 2 = − �H10A0�
�2 − i�H3
23�H10A0�
�3,

3 = − �H10A0�
�3,

4 =
1
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� , �27�

5 = 0, 6 = − �H10A0�
�6, 7 = 0,

8 = − �H10A0�
�8 − i
H7
83�H10A0�
�3.

The formal solution of Eq. �27� is expressed as

Ap�
 = �
j=1

8 �aj + �
yj

y dQj

dy
dy�z j , �28�

where the constants aj and yj are determined using the
boundary conditions given by Eq. �7�. Using properties of
determinants, we obtain the following solution:
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with

a1 =
c2E2357 + c4E4357 + c6E6357 + c8E8357

E1357
, �29b�

a3 =
c2E1257 + c4E1457 + c6E1657 + c8E1857

E1357
, �29c�

a5 =
c2E1327 + c4E1347 + c6E1367 + c8E1387

E1357
, �29d�

a7 =
c2E1352 + c4E1354 + c6E1356 + c8E1358

E1357
, �29e�

cj = �
0

	 dQj
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dy , �29f�

Eijkl = det�
z1i z1j z1k z1l

z3i z3j z3k z3l

z5i z5j z5k z5l

z7i z7j z7k z7l

� . �29g�
y=0
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IV. INVERSE LAPLACE TRANSFORM

The inverse Laplace transform of Eq. �29a� is

A�
�y,t;�,
� =
1

2�i
�

p0−i	

p0+i	

Ap�
�y ;p,�,
�eptdp . �30�

Figure 1 shows a schematic of an appropriate integration
contour for the inverse Laplace transform, which is deter-
mined by poles �relevant to the discrete spectrum� and by
branch cuts �relevant to the continuous spectrum�.

By integrating along the contour shown in Fig. 1, Eq.
�30� can be written as a sum of integrals along the sides, �+

and �−, of each branch cut and a sum of residues resulting
from the poles of Eq. �29a� given by the equation E1357�p�
=0, i.e.,

A�
 = −
1

2�i
�
m
��

�m
+

Ap�
eptdp + �
�m

−
Ap�
eptdp�

+ �
n

Resn�Ap�
ept� . �31�

FIG. 1. Integration contour for the inverse Laplace transform.
FIG. 2. Streamwise velocity disturbance of mode S.
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A. Discrete spectrum

Modes of the discrete spectrum correspond to poles of
Eq. �29a�, which are roots of E1357�p�=0, where E1357 is
defined by Eq. �29g�. Discrete modes arise from the situation
when all the roots of Eq. �11� have nonzero real parts and are
given by the poles’ contribution to the inverse Laplace trans-
form, i.e., the residues shown in Eq. �31�. These residues
have the form

Resn�Ap�
ept� = An�y ;pn,�,
�epnt, �32�

with

An = �â1z1 + â3z3 + â5z5 + â7z7�� �E1357

�p
�pn��−1

, �33�

where â1, â3, â5, and â7 are given by the numerators of Eqs.
�29b�–�29e�. If the eigenvalue pn=−i�n belongs to the dis-
crete spectrum, then the associated eigenfunction An decays
exponentially outside the boundary layer �y→	�.

To illustrate features of the spectrum, we consider a
boundary layer over an adiabatic sharp cone at zero angle of
attack. The length scale is L*=���e

*x* /�e
*Ue

*� and the

Reynolds number is Re=���e
*Ue

*x* /�e
*�. Using the Lees-

Dorodnitsyn transformation,13 we solve the conical problem
with boundary layer profiles for a flat plate. Accordingly, all
conical results presented hereafter can be adjusted to the flat
plate boundary layer by dividing the parameters Re, �, 
,
and � by �3.

FIG. 3. Normal velocity disturbance of mode S.
FIG. 4. Spanwise velocity disturbance of mode S.
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The standard form for the direct problem given by Eq.
�8� was used for the numerical evaluations. The numerical
scheme performs the integration of Eq. �8� for four funda-
mental solutions �discrete spectrum� or for five fundamental
solutions �continuous spectrum�. A fourth-order Runge–
Kutta integration method with constant step �301 points� was
used to integrate from outside the boundary layer �ymax

=25� toward the wall using the Gram-Schmidt orthonormal-
ization procedure.

When analyzing the continuous spectrum, k is a param-
eter, and the frequency � is calculated using � j

2=−k2, where
� j are given by Eq. �11�. When analyzing the discrete spec-
trum, � is calculated using Newton’s iteration method. This
iteration method depends on the initial approach to �. A
two-domain Chebyshev spectral collocation method14 was
used to determine the initial approach.

To maintain consistency with the 2D problem analyzed
in Ref. 3, we choose the following parameter values: M
=5.6, Re=1219.5, Pr=0.7, �=1.4, e=0 with an adiabatic
wall and stagnation temperature T0=470 K.

Two discrete modes are of interest. One discrete mode
will be referred to as “mode F,” where “F” stands for “fast”;
this is the mode whose phase speed approaches that of the
fast acoustic mode as �→0 �2D case�. Another discrete
mode will be referred to as “mode S,” where “S” stands for
“slow”; this is the mode whose phase speed approaches that
of the slow acoustic mode as �→0 �2D case�. Even though
in the 3D case, synchronism with the fast and slow acoustic

FIG. 5. Pressure disturbance of mode S.
FIG. 6. Temperature disturbance of mode S.

ownloaded 16 May 2008 to 132.250.142.131. Redistribution subject to
modes as �→0 may no longer occur, the behavior of each
mode curve �3D� is similar to the behavior of the corre-
sponding 2D mode curve. Thus it should not be confusing to
refer to the 3D curves as mode F and mode S.

As an example, Figs. 2, 3, and 4 show the distribution
for the streamwise, normal, and spanwise velocity distur-
bances corresponding to mode S for �=0.2, 
=0.14, with
complex-valued eigenvalue �=0.18291+ i3.95�10−5 �this
choice of parameters corresponds to a disturbance propaga-
tion angle of ��35°, where tan �=
 /��. Figures 5 and 6
show respectively the pressure and temperature disturbances
corresponding to this mode.

FIG. 7. Branch cuts of the continuous spectrum in the complex plane
p=−i�.

FIG. 8. Streamwise velocity disturbance of the acoustic mode: �a� slow, �b�

fast.
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B. Continuous spectrum

Modes of the continuous spectrum correspond to branch
cuts of Eq. �29a�. Solutions of the continuous spectrum arise
from the situation when a characteristic number � j given by
Eq. �11� is purely imaginary �� j

2=−k2 , k�0, j=1, …, 8�. As
in the 2D case discussed in Ref. 3, the first pure oscillatory
solution corresponds to �1,2

2 =−k2. This equation, along with
Eq. �11�, leads to the following �different from the 2D case�
relation:

pc,1 = − i�� + 
Wse� − �k2 + �2 + 
2�/Re. �34�

As in the 2D case, this solution is interpreted as a vor-
ticity branch, where the vorticity disturbances are propagat-
ing with a phase speed of c=1. The equation

��b22 − �2��b33 − �2� − b23b32� = 0 �35�

is a third-degree polynomial in p and has three roots at �2

=−k2. These roots �pc,2 , pc,3 , pc,4� were computed numeri-
cally for the case when Wse=0 �2D mean flow�. Figure 7
shows the results for �=0.2, 
=0.14. The horizontal branch
in Fig. 7 has a finite limiting point and is interpreted as an
entropy branch, where the entropy disturbances are propagat-
ing with a phase speed of c=1. The vorticity branch given by
Eq. �34� overlaps the entropy branch. The upper and lower
branches in Fig. 7 are associated with fast and slow acoustic
waves. These waves travel with the respective phase speeds
c=1±�1+
2 /�2 /Me. The fifth pure oscillatory solution is an
additional solution not found for the 2D case. The equation,
�7,8

2 =−k2, along with Eq. �11�, leads to the relation

pc,5 = − i�� + 
Ws� − �k2 + �2 + 
2�/Re. �36�

Equation �36� is identical to Eq. �34�. The fifth relation is
also interpreted as a vorticity branch, where the vorticity
disturbances are propagating with a phase speed of c=1. The
existence of two vorticity modes reflects the three-
dimensionality of the perturbations.

As in the 2D case, it is possible to find compact forms
for the solutions of the various regions of the continuous
spectrum. Using a similar technique to that used in Ref. 3,
we denote one side of each branch cut as plus �+� and the
other side of the branch cut as minus �−� in accordance with
the asymptotic behavior of the type of disturbance being con-
sidered. By relating z j

+ to z j
− and dQj

+ /dy to dQj
− /dy, the

integrals along the branch cut sides �+ and �− can be written
as one integral of the difference Ap�


+ −Ap�

− .

Solutions for the acoustic waves include five fundamen-
tal vector functions, three of which decay outside the bound-
ary layer, and two of which oscillate as e±iky. Ap�


+ −Ap�

− can

be written solely in terms of the functions on the + side of
the branch cut as

Ap�

+ − Ap�


− = � c2E1275

E1753E1754
+

c3E1753

E1753E1754
+

c4E1754

E1753E1754

+
c6E1756

E1753E1754
+

c8E7185

E1753E1754
��E5734z1

+ E1754z3 + E7153z4 + E7134z5 + E1534z7� .
�37�
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The horizontal branch cut in the 2D case has a region of
overlapping vorticity and entropy disturbances. The remain-
der of the branch cut is a region of vorticity disturbances. In
the 3D problem, the entire branch cut contains a region of
overlapping vorticity modes, and there is a region of the
branch cut that has entropy disturbances overlapping the two
vorticity modes.

In the region of overlapping vorticity modes, there is an
uncertainty. There are six fundamental solutions �four oscil-
lating and two decaying� in this region; however, this num-
ber of fundamental solutions is larger than is needed to sat-
isfy the boundary conditions. This difficulty is resolved using
the technique described above in obtaining Eq. �37�. The
solution can be expressed as a sum of two standalone vortic-
ity modes as follows:

Ap�

+ − Ap�


− = Ac,1 + Ac,5, �38�

where

Ac,1 = � c1E1753

E1753E2753
+

c2E2753

E1753E2753
+

c4E4753

E1753E2753

+
c6E6753

E1753E2753
+

c8E8753

E1753E2753
��E2753z1 − E1753z2

+ E1275z3 + E1723z5 + E1253z7� �39�

and

Ac,5 = � c1E1253

E2753E2853
+

c4E5234

E2753E2853
+

c6E2563

E2753E2853

+
c7E7253

E2753E2853
+

c8E8253

E2753E2853
��E7853z2 + E2785z3

− E2783z5 − E2853z7 + E2753z8� . �40�

Both Eqs. �39� and �40� satisfy the boundary conditions on
the wall.

In the region of three overlapping modes �two vorticity
and entropy�, there also exists an uncertainty. There are
seven fundamental solutions in this region �six oscillating
and one decaying�. Again, this number of fundamental solu-
tions is larger than is needed to satisfy the boundary condi-
tions. This difficulty is resolved using the technique de-
scribed previously in obtaining Eq. �37�, and since the region
of three overlapping modes has not been encountered before,
we shall show the derivation of the solution. In this overlap-
ping region, we denote one side of the branch cut as + and
the other side of the branch cut as − in accordance with the
asymptotic behavior:

z1
+ � eiky, z1

− � e−iky, z2
+ � e−iky , �41a�

z2
− � eiky, z3

+ � e�3y, z3
− � e�3y , �41b�

z4
+ � e�4y, z4

− � e�4y, z5
+ � eik1y , �41c�

z− � e−ik1y, z+ � e−ik1y, z− � eik1y , �41d�
5 6 6
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z7
+ � eiky, z7

− � e−iky, z8
+ � e−iky, z8

− � eiky , �41e�

where k and k1 are real, positive parameters, and �3,4 are
given by Eq. �11�. It is possible to obtain the relations

z1
− = z2

+, z2
− = z1

+, z3
− = z3

+, z4
− = z4

+, �42a�

z5
− = z6

+, z6
− = z5

+, z7
− = z8

+, z8
− = z7

+, �42b�

dQ1
−

dy
=

dQ2
+

dy
,

dQ2
−

dy
=

dQ1
+

dy
, �42c�

dQ3
−

dy
=

dQ3
+

dy
,

dQ4
−

dy
=

dQ4
+

dy
, �42d�

dQ5
−

dy
=

dQ6
+

dy
,

dQ6
−

dy
=

dQ5
+

dy
, �42e�

dQ7
−

dy
=

dQ8
+

dy
,

dQ8
−

dy
=

dQ7
+

dy
. �42f�

The integrals along the branch cut sides �+ and �− can be
written as one integral of the difference

Ap�

+ − Ap�


− = �a1
+ + �

0

y dQ1
+

dy
dy�z1

+ + �
	

y dQ2
+

dy
dyz2

+

+ �a3
+ + �

0

y dQ3
+

dy
dy�z3

+ + �
	

y dQ4
+

dy
dyz4

+

+ �a5
+ + �

0

y dQ5
+

dy
dy�z5

+ + �
	

y dQ6
+

dy
dyz6

+

+ �a7
+ + �

0

y dQ7
+

dy
dy�z7

+ + �
	

y dQ8
+

dy
dyz8

+

− �a1
− + �

0

y dQ1
−

dy
dy�z1

− − �
	

y dQ2
−

dy
dyz2

−

− �a3
− + �

0

y dQ3
−

dy
dy�z3

− − �
	

y dQ4
−

dy
dyz4

−

− �a5
− + �

0

y dQ5
−

dy
dy�z5

− − �
	

y dQ6
−

dy
dyz6

−

− �a7
− + �

0

y dQ7
−

dy
dy�z7

− − �
	

y dQ8
−

dy
dyz8

−.

�43�

After substitution of the relations given in Eqs. �41a�–�41e�
and �42a�–�42f�, simplification leads to the following expres-
sion:

Ap�

+ − Ap�


− = �a1
+ + c1

+�z1
+ − �c2

+ + a1
−�z2

+ + �a3
+ − a3

−�z3
+

+ �a5
+ + c5

+�z5
+ − �a5

− + c6
+�z6

+ + �a7
+ + c7

+�z7
+

− �c8
+ + a7

−�z8
+. �44�
Equation �44� can be expressed in the compact form
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Ap�

+ − Ap�


− = Ac,1 + Ac,2 + Ac,5, �45�

where Ac,1 and Ac,5 are given by Eqs. �39� and �40� and with

Ac,2 = � c1E1283

E2853E2863
−

c4E2834

E2853E2863
+

c5E2853

E2853E2863

+
c6E2863

E2853E2863
−

c7E2783

E2853E2863
��E8563z2 + E2856z3

+ E2863z5 − E2853z6 − E2563z8� . �46�

Each term in Eq. �45� satisfies the boundary conditions on
the wall and can be interpreted as a standalone mode.

As an example, Figs. 8 and 9 show the distribution of the
streamwise and spanwise velocity for both slow and fast
acoustic disturbances.

C. Summary

We can now express the inverse Laplace transform given
by Eq. �31� as

A�
�y,t;�,
� = −
1

2�i
�
m=1

5 �
0

	

Ac,m�y ;k,�,
�

�epc,m�k�tdpc,m

dk
dk + �

n

An�y ;pn,�,
�epnt,

�47�

where m=1 corresponds to one vorticity wave, with pc,1 and
Ac,1 given by Eqs. �34� and �39�, respectively; m=2 corre-
sponds to the entropy wave, with pc,2 and Ac,2 given by Eqs.

FIG. 9. Spanwise velocity disturbance of the acoustic mode: �a� slow, �b�
fast.
�35� and �46�, respectively; m=3,4 correspond to slow and
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fast acoustic waves, with pc,3,4 and Ac,3,4 given by Eqs. �35�
and �37�, respectively; m=5 corresponds to the second vor-
ticity wave, with pc,5 and Ac,5 given by Eqs. �36� and �40�,
respectively; pn is a root of E1357�p�=0, and An is given by
Eq. �33�.

D. Biorthogonal system of eigenfunctions

Following Ref. 15, it is possible to express a solution of
the initial-value problem �Eq. �47�� as an expansion in the
biorthogonal eigenfunction system �A� ,B��, where the vec-
tor A� is a solution of the direct problem and the vector B�

is a solution of the adjoint problem. There is an orthogonality
relation associated with the biorthogonal eigenfunction sys-
tem. This orthogonality relation, along with the Fourier
transform of the initial data, can be used to compute the
coefficients associated with each of the discrete and continu-
ous modes. Further details can be found in the Appendix.

V. SYNCHRONISM OF MODE S AND MODE F
WITH ACOUSTIC WAVES

In the 2D problem, mode S and mode F are synchro-
nized respectively with the slow and fast acoustic modes for
a wave number �→0. Figure 10 shows numerical results for
eigenvalues �r of mode F for a fixed choice of spanwise
wave number 
. Included in Fig. 10 are lines of constant
phase speed. One of these is a line of phase speed c=1, the
speed at which the entropy and vorticity disturbances travel.
The other lines are associated with fast acoustic modes �FA

FIG. 10. Eigenvalues for mode F for 
=0.0001 and 
=0.1601.
FIG. 11. Figure 10 at low wave number.
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mode� and slow acoustic modes �SA mode� for 
=0.0001
�2D� and 
=0.1601. The fast/slow acoustic waves travel
with phase speed c=1±�1+
2 /�2 /Me. Figure 10 shows that
mode F for both 
=0.0001 and 
=0.1601 is a subsonic dis-
turbance relative to the free stream for ��0.37 and is a
supersonic disturbance relative to the free stream for �
�0.37. Furthermore, although it is not shown in any figure,
these disturbances are everywhere decaying. To obtain a
clearer picture of what is occurring at the lower wave num-
bers, Fig. 11 shows a section of Fig. 10.

As can be seen in Fig. 11, just as mode F at 
=0.0001 is
synchronized with the 
=0.0001 fast acoustic mode at a
wave number ��0.1, mode F at 
=0.1601 is synchronized
with the 
=0.1601 fast acoustic modes at a wave number
��0.1.

Figure 12 shows numerical results for eigenvalues �r of
mode S for a fixed choice of spanwise wave number. Also
included in Fig. 12 are lines of constant phase speed for the
FA mode and SA mode for 
=0.0001 and 
=0.1601. The
two mode S curves are virtually overlapping. In order to gain
a clearer view of what is occurring at the lower wave num-
bers, Fig. 13 shows a section of Fig. 12.

In contrast to mode F, Fig. 13 clearly shows that mode S
for both choices of 
 is asymptotically approaching the SA
mode for 
=0.0001. We have observed this behavior at ev-
ery choice of 
 that we have checked. Even though mode S
for various choices of 
 �3D� approach the SA mode for 

=0.0001, there is no synchronism between the two. The pri-

FIG. 12. Eigenvalues for mode S for 
=0.0001 and 
=0.1601.
FIG. 13. Figure 12 at low wave number.
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mary synchronism of mode S with acoustic waves for �
�0.1 is two-dimensional �2D mode S with the 2D SA
mode�.

VI. SYNCHRONISM OF MODE F WITH ENTROPY
AND VORTICITY WAVES

Figure 14 shows eigenvalues of mode F for �=0° and
�=60°. One can see that for �=0°, mode F is subsonic rela-
tive to the free stream for ��0.35 and is supersonic relative
to the free stream for ��0.35. However, for �=60°, mode F
is subsonic relative to the free stream for this entire range of
�. It can also be seen that mode F for both angles of distur-
bance propagation is everywhere decaying.

Furthermore, Fig. 14 shows the synchronism between
the 2D mode F and the entropy and vorticity modes of the
phase speed c=1. In the 2D case, as the discrete mode coa-
lesces with the continuous spectrum from one side of the
branch cut, it reappears on the other side at another point.
Mathematically, the pole associated with mode F approaches
one side of the branch cut on the complex p plane. At the
same time, another pole, located on the lower Riemann
sheet, approaches the branch cut from the opposite side. As
the pole on the plane coalesces with the branch cut, it moves
to the upper Riemann sheet, while simultaneously, the pole
that was on the lower Riemann sheet moves into the complex
p plane at another point.3 This leads to a jump in �i. As the
angle increases, the synchronism continues, but the jump
size decreases, until it is seen that for �=60° there is neither
a synchronism, nor a jump in �i, at least for this interval of
wave number �. Figure 15 shows contours of �i in the �
−
 wave number plane. One can see the jump location for

FIG. 14. Eigenvalues for mode F for �=0° and �=60°.
choices of � and 
. Also plotted in the figure is a small
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region bounding the branch cut. This region is denoted by
the dashed lines. We have done this in lieu of plotting the
branch cut, since the branch cut plot obscures the jumps in
�i. It is clear that the discontinuity of �i is associated with
the synchronism of mode F and the entropy and vorticity
waves. For large values of 
, it appears that no jump is seen
in Fig. 15 at the location of the branch cut. A jump does in
fact exist, but the size of the jump is small enough so that it
cannot be seen on the scale of this figure.

By plotting lines of constant angle, it is seen that the
synchronism between mode F and the entropy and vorticity
waves vanishes for large enough angles.

VII. SYNCHRONISM OF MODE S WITH MODE F

Figure 16 shows the eigenvalue curves for mode S and
mode F for �=30°. The mode S curve given by the imagi-
nary part of the eigenvalue �i contains two regions of insta-

FIG. 15. Contours of �i in the �−
 plane.

°
FIG. 16. Eigenvalues for mode F and mode S for �=30 .
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bility. The unstable region located at �=0.12 is equivalent to
Mack’s first mode. The unstable region located at �=0.26 is
equivalent to Mack’s second mode. Further details regarding
the relation between mode S and mode F and Mack’s acous-
tic modes can be found in Sec. VIII. The range of � is ex-
tended to �=0.5 in order to show the decaying behavior of
both mode S and mode F for larger values of �.

In the 2D case, mode F is synchronized with mode S.
This synchronism is indicative of the fact that the discrete
spectrum has a branch point at �* in the complex � plane.
True synchronism �mode S and mode F have the same value
of �i as well as the same value of �r� occurs at �*, which
may have a different real part from where mode S’s value of
�r is equal to mode F’s value of �r. At values of ���r

*, the
disturbance spectrum branches out: mode S becomes un-
stable while mode F becomes more stable �the topological
pattern may be sensitive to the mean flow parameters, such
as Mach number, Prandtl number, and temperature factor;
further details can be found in Ref. 11�.

As seen in Fig. 16, this mode S instability continues for
a disturbance propagating at �=30° �near ��0.23�. For
larger angles, however, even though there is still synchro-
nism between mode S and mode F, the synchronism is no
longer accompanied by a mode S instability. This behavior
can be seen for a disturbance propagating at �=45° in Fig.
17. Even though it cannot be seen in Fig. 17, plots of the
pressure disturbance indicate that there is a switch from the
Mack first mode to the Mack second mode. However, for this
disturbance propagation angle, there is no amplified Mack
second mode.

In Fig. 18, one can see that at even higher angles of

FIG. 17. Eigenvalues for mode F and mode S for �=45°.
disturbance propagation, there is no synchronism between
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mode S and mode F. Additionally, at this angle, the mode S
curve consists entirely of the Mack first mode.

VIII. DISCUSSION

In order to avoid confusion, we now discuss Mack’s8,9

results and how they relate to mode S and mode F. Mack first
considered inviscid perturbations and computed eigenvalue
curves or families for various choices of parameters. Each of
these families contains an unstable region corresponding to
one of the higher Mack modes �first mode, second mode,
third mode, etc.�, and each amplification rate curve repre-
sents a distinct discrete mode. Using asymptotic analysis,
Gushchin and Fedorov16 also captured the feature that each
amplified first mode, second mode, etc. represents a separate
solution.

Mack then considered viscous perturbations and com-
puted families of eigenvalues for finite Reynolds numbers
and compared the eigenvalue curves with the inviscid ones.
For one of Mack’s choices of parameters, there were two
“separate … inviscid amplification rate curves for the first
and second modes” �Ref. 8, pp. 12–24� �i.e., two inviscid
normal modes�, but “only a single amplification rate curve at
the finite Reynolds number shown” �Ref. 8, pp. 12–24� �i.e.,
one viscous normal mode�. This one viscous solution was
comprised of both the first mode and the second mode. This
viscous family is analogous to the mode S mentioned in prior
sections. Mode S in our analysis is a single discrete mode
that corresponds to a single pole in the complex p plane.
Furthermore, mode S is comprised of Mack’s amplified first,

FIG. 18. Eigenvalues for mode F and mode S for �=60°.
second, and possibly higher modes.
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Additionally, Mack explained how “the inviscid solu-
tions are to be the Re→	 limit of the viscous solutions”
�Ref. 8, pp. 12–25� through “the existence of multiple vis-
cous solutions” �Ref. 8, pp. 12–25�. For the Reynolds num-
ber of his example, this additional viscous solution is
damped, and it is analogous to the mode F mentioned in
prior sections. We would like to point out that Ma and
Zhong4,5 and Zhong and Ma6 refer to mode F as mode I and
refer to mode S, not as a single family, but rather to the parts
that comprise the family �Mack’s first mode, second mode,
etc.�.

Mack used a nomenclature for these viscous families
that was based on his inviscid nomenclature. However, at the
time, the receptivity problem was not understood, and the
decomposition of the solutions of the linearized Navier-
Stokes equations had not been developed. We therefore sug-
gest keeping the terminology corresponding to the normal
mode analysis. The normal modes, mode S and mode F, are
represented by separate poles in the complex plane, and they
may be synchronized with slow and fast acoustic waves at a
wave number �→0.

IX. CONCLUSIONS

In this paper we solve the 3D initial-value problem for
disturbances propagating in a compressible boundary layer in
the parallel flow approximation. After resolving the issue
with overlapping branch cuts, we showed that the solution
can also be expressed as an expansion in a biorthogonal
eigenfunction system. A numerical example that is used to
investigate the spectrum of 3D disturbances in a 2D high-
speed boundary layer flow leads to the following conclu-
sions:

�1� Mode S and mode F are eigenvalue curves that corre-
spond to separate solutions. Mathematically, each curve
is the trajectory of a single pole in the complex p plane.

�2� Mode S contains regions of Mack first and second
modes. Our results are consistent with Mack’s8,9 in so
far as the mode S region comprised of Mack’s second
mode is most unstable to 2D disturbances, and the mode
S region comprised of Mack’s first mode is most un-
stable to a 3D disturbance.

�3� The discrete spectrum can change dramatically, depend-
ing on the angle of the disturbance propagation.

�4� Eigenvalue plots for choices of fixed spanwise wave
number, 
, show that the synchronism of mode S with
the slow acoustic mode is primarily two-dimensional.

�5� At a sufficiently high angle of disturbance propagation,
mode F ceases to synchronize with the entropy and vor-
ticity modes.

�6� At a sufficiently high angle of disturbance propagation,
the synchronism of mode S and mode F is no longer
accompanied by a mode S instability. At even higher
angles, there is no synchronism between mode S and
mode F.

The synchronism observed in the example means that
the phase velocities of the modes are the same. However,

their complex eigenvalues are different. When the parallel
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flow assumption is used, as it has been for this analysis, the
normal modes are orthogonal to one another and therefore do
not interact with each other. However, this analysis may be
extended to the case of nonparallel flow through the use of
multiple scale methods. There will be a slow and a fast scale.
At the level of the fast scale, the analysis shown here for
parallel flow will be valid. At the level of the slow scale, the
normal modes will interact and hence, one mode may be
generated by another mode at the point of synchronism.
Analysis of a nonparallel boundary layer flow was performed
by Fedorov and Khokhlov11 for the spatial stability problem.
They showed that mode F may be generated by the vorticity/
entropy modes. This decaying mode F may then effectively
generate an unstable mode S. Additionally, this behavior has
been seen in numerical studies for the spatial stability prob-
lem. Therefore, the features of the 3D spectrum found in our
analysis of the initial-value problem might have a significant
impact on the transition scenario in high-speed boundary lay-
ers. All the features discussed must be taken into account
when designing transition experiments in hypersonic flows.
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APPENDIX: BIORTHOGONAL SYSTEM
OF EIGENFUNCTIONS

It is possible to express a solution of the initial-value
problem �Eq. �47�� as an expansion in the biorthogonal
eigenfunction system �A� ,B��. The vector A� is a solution
of the direct problem

d

dy
�L0

dA�

dy
� +

dA�

dy
= − i�H10A� + H11A� + i�H2A�

+ i�H3
dA�

dy
− �2H4A� + i
H5A�

− �
H6A� + i
H7
dA�

dy

− 
2H8A�, �A1�

y = 0: A�1 = A�3 = A�5 = A�7 = 0,

y → 	: �A�j� � 	 �j = 1,…,8� . �A2�
The vector B� is a solution of the adjoint problem

 AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



084106-13 Initial-value problem Phys. Fluids 17, 084106 �2005�

D

d

dy
�L0

*dB�

dy
� −

dB�

dy
= i�̄H10

* B� + H11
* B� − i�H2

*B�

+ i�H3
*dB�

dy
− �2H4

*B� − i
H5
*B�

− �
H6
*B� + i
H7

*dB�

dy

− 
2H8
*B�, �A3�

y = 0: B�2 = B�4 = B�6 = B�8 = 0,

y → 	: �B�j� � 	 �j = 1,…,8� . �A4�

The asterisk in Eq. �A3� denotes a Hermitian matrix, and the
overbar denotes a complex conjugate value. The direct prob-
lem, Eqs. �A1� and �A2�, can be expressed in the standard
form given by Eq. �8�. The adjoint problem, Eqs. �A3� and
�A4�, can be expressed in a similar fashion as

−
dY

dy
= H0

*Y , �A5�

y = 0: Y2 = Y4 = Y6 = Y8 = 0,

y → 	: �Y j� � 	 �j = 1,…,8� . �A6�

A correspondence can be found between B� and Y. These
relationships are given as follows:

B1 = Y1 +
i�rY4

�Re/�s − ir�Me
2��Us + 
Ws − �̄��

, �A7�

B2 = Y2, �A8�

B3 = i��m + 1�Y2 + Y3

+
rDTs

Ts

Y4

�Re/�s − ir�Me
2��Us + 
Ws − �̄��

−
r�s

Re

d

dy
� Y4

�1 − ir�Me
2��s/Re���Us + 
Ws − �̄���

+ i
�m + 1�Y8, �A9�

B4 =
Y4

�1 − ir�Me
2��s/Re���Us + 
Ws − �̄��

, �A10�

B5 = Y5 −
ir��Us + 
Ws − �̄�

Ts

�
Y4

�Re/�s − ir�Me
2��Us + 
Ws − �̄��

, �A11�

B6 = Y6, �A12�

B7 = Y7 + i
r
Y4

�Re/�s − ir�M2��Us + 
Ws − �̄��
, �A13�
e
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B8 = Y8. �A14�

Solutions of the direct and adjoint problems given by Eqs.
�A1�, �A2�, �A3�, and �A4� belong to the discrete and con-
tinuous spectrum. Equations �32�, �37�, �39�, �40�, and �46�
are modes that satisfy the direct problem with weights �co-
efficients� that depend on the Fourier transform of the initial
disturbance, A0�
.

The eigenfunction system �A� ,B�� has an orthogonality
relation given as

�H10A�,B��� � �
0

	

�H10A�,B���dy = ���,��, �A15�

where � is a normalization constant. ��,�� is a Kronecker
delta if either � or �� belong to the discrete spectrum.
��,��=���−��� is a Dirac delta function if both � and ��
belong to the continuous spectrum.

The inverse Laplace transform can be expressed as an
expansion in the biorthogonal eigenfunction system as fol-
lows:

A�
�y,t� = �
�

c�A�
��
�y�e−i��t

+ �
j
�

0

	

cj�k�A�
�j
�y�e−iwj�k�tdk , �A16�

where �� denotes a summation over the discrete spectrum
and � j denotes a summation over the continuous spectrum.
Using the Fourier transform of the initial disturbance, A0�
,
as well as the orthogonality relation �Eq. �A15��, one can
find the coefficients c� and cj.
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